In this paper we address the problem of building a class of robust factorization algorithms that solve for the shape and motion parameters with both affine (weak perspective) and perspective camera models. We introduce a Gaussian/uniform mixture model and its associated EM algorithm. This allows us to address robust parameter estimation within a data clustering approach. We propose a robust technique that works with any affine factorization method and makes it robust to outliers. In addition, we show how such a framework can be further embedded into an iterative perspective factorization scheme. We carry out a large number of experiments to validate our algorithms and to compare them with existing ones. We also compare our approach with factorization methods that use M-estimators.
翻译:在本文中,我们探讨建立一套稳健的乘数算法的问题,这种算法既能用finpe(弱视角),又能用视觉摄像模型解决形状和运动参数的问题。我们引入了高斯/单一混合模型及其相关的EM算法。这使我们能够在数据分组方法中解决稳健的参数估计问题。我们提出了一种与任何近距离乘数法合作的稳健技术,使其对外线具有强力。此外,我们展示了如何将这种框架进一步嵌入迭代视角乘数计算法中。我们进行了大量实验,以验证我们的算法,并将其与现有的算法进行比较。我们还将我们的方法与使用M-估计法的乘数方法进行了比较。