We propose opportunistic evaluation, a framework for accelerating interactions with dataframes. Interactive latency is critical for iterative, human-in-the-loop dataframe workloads for supporting exploratory data analysis. Opportunistic evaluation significantly reduces interactive latency by 1) prioritizing computation directly relevant to the interactions and 2) leveraging think time for asynchronous background computation for non-critical operators that might be relevant to future interactions. We show, through empirical analysis, that current user behavior presents ample opportunities for optimization, and the solutions we propose effectively harness such opportunities.
翻译:我们提出机会评估,作为加速与数据框架互动的框架。互动延迟对于支持探索性数据分析的迭代、即时人数据框架工作量至关重要。 机会评估极大地降低了互动延迟,其方法是:(1) 优先计算与互动直接相关的数据,(2) 利用思考时间为可能与未来互动相关的非关键操作者进行不同步的背景计算。 我们通过经验分析表明,当前用户行为提供了优化的充足机会,以及我们提出的有效利用这些机会的解决方案。