We present PathoSyn, a unified generative framework for Magnetic Resonance Imaging (MRI) image synthesis that reformulates imaging-pathology as a disentangled additive deviation on a stable anatomical manifold. Current generative models typically operate in the global pixel domain or rely on binary masks, these paradigms often suffer from feature entanglement, leading to corrupted anatomical substrates or structural discontinuities. PathoSyn addresses these limitations by decomposing the synthesis task into deterministic anatomical reconstruction and stochastic deviation modeling. Central to our framework is a Deviation-Space Diffusion Model designed to learn the conditional distribution of pathological residuals, thereby capturing localized intensity variations while preserving global structural integrity by construction. To ensure spatial coherence, the diffusion process is coupled with a seam-aware fusion strategy and an inference-time stabilization module, which collectively suppress boundary artifacts and produce high-fidelity internal lesion heterogeneity. PathoSyn provides a mathematically principled pipeline for generating high-fidelity patient-specific synthetic datasets, facilitating the development of robust diagnostic algorithms in low-data regimes. By allowing interpretable counterfactual disease progression modeling, the framework supports precision intervention planning and provides a controlled environment for benchmarking clinical decision-support systems. Quantitative and qualitative evaluations on tumor imaging benchmarks demonstrate that PathoSyn significantly outperforms holistic diffusion and mask-conditioned baselines in both perceptual realism and anatomical fidelity. The source code of this work will be made publicly available.
翻译:本文提出PathoSyn,一种用于磁共振成像(MRI)图像合成的统一生成框架,该框架将影像-病理问题重新表述为稳定解剖流形上的解耦加性偏差。现有生成模型通常在全局像素域操作或依赖二值掩码,这些范式常因特征纠缠而导致解剖基底受损或结构不连续。PathoSyn通过将合成任务分解为确定性解剖重建与随机性偏差建模来解决这些局限。本框架的核心是设计用于学习病理残差条件分布的偏差空间扩散模型,从而在构造上捕获局部强度变化的同时保持全局结构完整性。为确保空间一致性,扩散过程结合了缝隙感知融合策略与推理时稳定模块,共同抑制边界伪影并生成高保真的内部病灶异质性。PathoSyn为生成高保真患者特异性合成数据集提供了数学原理驱动的流程,有助于在低数据场景下开发鲁棒的诊断算法。通过支持可解释的反事实疾病进展建模,该框架能够辅助精准干预规划,并为临床决策支持系统的基准测试提供受控环境。在肿瘤影像基准上的定量与定性评估表明,PathoSyn在感知真实性与解剖保真度方面均显著优于整体扩散模型及掩码条件基线方法。本工作的源代码将公开提供。