We introduce a curated video dataset of laboratory rodents for automatic detection of convulsive events. The dataset contains short (10~s) top-down and side-view video clips of individual rodents, labeled at clip level as normal activity or seizure. It includes 10,101 negative samples and 2,952 positive samples collected from 19 subjects. We describe the data curation, annotation protocol and preprocessing pipeline, and report baseline experiments using a transformer-based video classifier (TimeSformer). Experiments employ five-fold cross-validation with strict subject-wise partitioning to prevent data leakage (no subject appears in more than one fold). Results show that the TimeSformer architecture enables discrimination between seizure and normal activity with an average F1-score of 97%. The dataset and baseline code are publicly released to support reproducible research on non-invasive, video-based monitoring in preclinical epilepsy research. RodEpil Dataset access - DOI: 10.5281/zenodo.17601357
翻译:本文介绍了一个经过精心整理的实验室啮齿动物视频数据集,用于自动检测惊厥性事件。该数据集包含单个啮齿动物的短时长(10秒)俯视和侧视视频片段,并在片段级别标注为正常活动或癫痫发作。数据集包含从19个实验对象收集的10,101个阴性样本和2,952个阳性样本。我们详细描述了数据整理过程、标注协议和预处理流程,并报告了使用基于Transformer的视频分类器(TimeSformer)进行的基线实验。实验采用五折交叉验证,并严格按实验对象划分以防止数据泄露(同一实验对象不出现在多个折中)。结果表明,TimeSformer架构能够区分癫痫发作与正常活动,平均F1分数达到97%。该数据集及基线代码已公开发布,以支持临床前癫痫研究中基于视频的非侵入式监测的可重复性研究。RodEpil数据集访问 - DOI: 10.5281/zenodo.17601357