Out-of-distribution (OOD) detection is essential for deploying deep learning models in open-world environments. Existing approaches, such as energy-based scoring and gradient-projection methods, typically rely on high-dimensional representations to separate in-distribution (ID) and OOD samples. We introduce P-OCS (Perturbations in the Orthogonal Complement Subspace), a lightweight and theoretically grounded method that operates in the orthogonal complement of the principal subspace defined by ID features. P-OCS applies a single projected perturbation restricted to this complementary subspace, enhancing subtle ID-OOD distinctions while preserving the geometry of ID representations. We show that a one-step update is sufficient in the small-perturbation regime and provide convergence guarantees for the resulting detection score. Experiments across multiple architectures and datasets demonstrate that P-OCS achieves state-of-the-art OOD detection with negligible computational cost and without requiring model retraining, access to OOD data, or changes to model architecture.


翻译:分布外(OOD)检测对于在开放世界环境中部署深度学习模型至关重要。现有方法,如基于能量的评分和梯度投影方法,通常依赖于高维表示来区分分布内(ID)和OOD样本。我们提出P-OCS(正交补子空间扰动),这是一种轻量级且理论严谨的方法,在ID特征定义的主子空间的正交补空间中操作。P-OCS应用一个限制在该补子空间的单次投影扰动,增强细微的ID-OOD区分,同时保持ID表示的几何结构。我们证明在小扰动机制下,单步更新即足够,并为所得检测分数提供了收敛性保证。在多种架构和数据集上的实验表明,P-OCS以可忽略的计算成本实现了最先进的OOD检测,且无需模型重新训练、访问OOD数据或修改模型架构。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员