An assurance case is intended to provide justifiable confidence in the truth of its top claim, which typically concerns safety or security. A natural question is then "how much" confidence does the case provide? We argue that confidence cannot be reduced to a single attribute or measurement. Instead, we suggest it should be based on attributes that draw on three different perspectives: positive, negative, and residual doubts. Positive Perspectives consider the extent to which the evidence and overall argument of the case combine to make a positive statement justifying belief in its claims. We set a high bar for justification, requiring it to be indefeasible. The primary positive measure for this is soundness, which interprets the argument as a logical proof. Confidence in evidence can be expressed probabilistically and we use confirmation measures to ensure that the "weight" of evidence crosses some threshold. In addition, probabilities can be aggregated from evidence through the steps of the argument using probability logics to yield what we call probabilistic valuations for the claims. Negative Perspectives record doubts and challenges to the case, typically expressed as defeaters, and their exploration and resolution. Assurance developers must guard against confirmation bias and should vigorously explore potential defeaters as they develop the case, and should record them and their resolution to avoid rework and to aid reviewers. Residual Doubts: the world is uncertain so not all potential defeaters can be resolved. We explore risks and may deem them acceptable or unavoidable. It is crucial however that these judgments are conscious ones and that they are recorded in the assurance case. This report examines the perspectives in detail and indicates how Clarissa, our prototype toolset for Assurance 2.0, assists in their evaluation.


翻译:肯定性案例的用意是提供对其最高索赔要求真相的正当信任,通常涉及安全或保障。一个自然的问题是“多少”信任,这自然是一个问题。我们争辩说,信任不能降为单一属性或衡量。相反,我们建议,信任应基于基于三个不同角度的属性:正面、负面和剩余疑问。积极的视角考虑证据和总体论据合在一起的程度,以得出一个我们所称的对索赔要求的准确性估价。我们为理由设定了一个高标准,要求它不可避免。这一标准的主要积极尺度是稳健性,将这一论点解释为逻辑证据的证明。对证据的信心可以概率表示概率,我们采用确认性措施确保证据的“重量”跨越某些门槛。此外,从证据的概率和总体论据的步骤中可以归纳出证据,用概率逻辑来得出我们所称的对索赔要求的准确性估价。 否定性观点记录了对案件的怀疑和挑战,通常表现为败败败者,以及他们的探索和解决。 保证者必须警惕性判断性地评估其潜在风险,然而,他们应该将不确定性记录在确定性结论性案例中进行。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月26日
Arxiv
0+阅读 · 2022年7月26日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员