In this paper, we design and analyze third order positivity-preserving discontinuous Galerkin (DG) schemes for solving the time-dependent system of Poisson--Nernst--Planck (PNP) equations, which has found much use in diverse applications. Our DG method with Euler forward time discretization is shown to preserve the positivity of cell averages at all time steps. The positivity of numerical solutions is then restored by a scaling limiter in reference to positive weighted cell averages. The method is also shown to preserve steady states. Numerical examples are presented to demonstrate the third order accuracy and illustrate the positivity-preserving property in both one and two dimensions.
翻译:在本文中,我们设计并分析了第三顺序活性-保护不连续的Galerkin(DG)计划,以解决Poisson-Nernst-Planck(PNP)等式(PNP)的时间依赖系统,这个系统在多种应用中被广泛使用。我们用Euler前向时间分解的DG方法显示,它保持了细胞平均值在所有步骤中的相对性。然后,数字解决方案的相对性通过一个正加权单元格平均值的缩放限制恢复。这个方法也显示保持稳定状态。提供了数字示例,以显示第三顺序的准确性,并展示了两个维度的两个维度。