We develop two fundamental stochastic sketching techniques; Penalty Sketching (PS) and Augmented Lagrangian Sketching (ALS) for solving consistent linear systems. The proposed PS and ALS techniques extend and generalize the scope of Sketch & Project (SP) method by introducing Lagrangian penalty sketches. In doing so, we recover SP methods as special cases and furthermore develop a family of new stochastic iterative methods. By varying sketch parameters in the proposed PS method, we recover novel stochastic methods such as Penalty Newton Descent, Penalty Kaczmarz, Penalty Stochastic Descent, Penalty Coordinate Descent, Penalty Gaussian Pursuit, and Penalty Block Kaczmarz. Furthermore, the proposed ALS method synthesizes a wide variety of new stochastic methods such as Augmented Newton Descent, Augmented Kaczmarz, Augmented Stochastic Descent, Augmented Coordinate Descent, Augmented Gaussian Pursuit, and Augmented Block Kaczmarz into one framework. Moreover, we show that the developed PS and ALS frameworks can be used to reformulate the original linear system into equivalent stochastic optimization problems namely the Penalty Stochastic Reformulation and Augmented Stochastic Reformulation. We prove global convergence rates for the PS and ALS methods as well as sub-linear $\mathcal{O}(\frac{1}{k})$ rates for the Cesaro average of iterates. The proposed convergence results hold for a wide family of distributions of random matrices, which provides the opportunity of fine-tuning the randomness of the method suitable for specific applications. Finally, we perform computational experiments that demonstrate the efficiency of our methods compared to the existing SP methods.


翻译:我们开发了两种基本的肉类切片素描技术; 惩罚切片技术(PS)和增强的拉格朗吉亚切片技术(ALS),用于解决一致线性系统。 拟议的PS和ALS技术通过引入拉格朗加项目(SP)素描图,扩大并推广了Strach & Project(SP)方法的范围。 这样,我们恢复了SP方法作为特例,并进一步开发了一套新的肉类迭接合方法。 通过在拟议的PS方法中的不同草图参数,我们恢复了新颖的肉类切片方法,如惩罚牛顿源、惩罚卡茨马尔茨、惩罚软骨源、惩罚协调源、惩罚软体的随机源、惩罚软体追求和惩罚卡茨马尔茨。 此外,拟议的ALS方法综合了多种新的肉类方法,如放大牛顿源、增强的卡兹马尔茨(Gability) 和ARCmarizloral-resservational 方法, 将已开发的PS-Squalalalalalalalalal 递增缩缩缩缩算法, 将Salalalalalalalalalal drodustreval 方法用于Sal 将Sal 将Salal 节压法的硬化为Storal 方法,将Salalalalal 节的原始的伸缩缩缩缩缩缩压法用于为目前的节节节节节节节节法, 方法,将Sal 方法用于为Storvadaltialtial 方法,将Sal-to 方法用于为Slational-stal-stal-sal-st 方法,将Sal-st-st-st-stal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-stal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-ro节节节节节节

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
76+阅读 · 2021年3月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员