We develop two fundamental stochastic sketching techniques; Penalty Sketching (PS) and Augmented Lagrangian Sketching (ALS) for solving consistent linear systems. The proposed PS and ALS techniques extend and generalize the scope of Sketch & Project (SP) method by introducing Lagrangian penalty sketches. In doing so, we recover SP methods as special cases and furthermore develop a family of new stochastic iterative methods. By varying sketch parameters in the proposed PS method, we recover novel stochastic methods such as Penalty Newton Descent, Penalty Kaczmarz, Penalty Stochastic Descent, Penalty Coordinate Descent, Penalty Gaussian Pursuit, and Penalty Block Kaczmarz. Furthermore, the proposed ALS method synthesizes a wide variety of new stochastic methods such as Augmented Newton Descent, Augmented Kaczmarz, Augmented Stochastic Descent, Augmented Coordinate Descent, Augmented Gaussian Pursuit, and Augmented Block Kaczmarz into one framework. Moreover, we show that the developed PS and ALS frameworks can be used to reformulate the original linear system into equivalent stochastic optimization problems namely the Penalty Stochastic Reformulation and Augmented Stochastic Reformulation. We prove global convergence rates for the PS and ALS methods as well as sub-linear $\mathcal{O}(\frac{1}{k})$ rates for the Cesaro average of iterates. The proposed convergence results hold for a wide family of distributions of random matrices, which provides the opportunity of fine-tuning the randomness of the method suitable for specific applications. Finally, we perform computational experiments that demonstrate the efficiency of our methods compared to the existing SP methods.
翻译:我们开发了两种基本的肉类切片素描技术; 惩罚切片技术(PS)和增强的拉格朗吉亚切片技术(ALS),用于解决一致线性系统。 拟议的PS和ALS技术通过引入拉格朗加项目(SP)素描图,扩大并推广了Strach & Project(SP)方法的范围。 这样,我们恢复了SP方法作为特例,并进一步开发了一套新的肉类迭接合方法。 通过在拟议的PS方法中的不同草图参数,我们恢复了新颖的肉类切片方法,如惩罚牛顿源、惩罚卡茨马尔茨、惩罚软骨源、惩罚协调源、惩罚软体的随机源、惩罚软体追求和惩罚卡茨马尔茨。 此外,拟议的ALS方法综合了多种新的肉类方法,如放大牛顿源、增强的卡兹马尔茨(Gability) 和ARCmarizloral-resservational 方法, 将已开发的PS-Squalalalalalalalalal 递增缩缩缩缩算法, 将Salalalalalalalalalal drodustreval 方法用于Sal 将Sal 将Salal 节压法的硬化为Storal 方法,将Salalalalal 节的原始的伸缩缩缩缩缩缩压法用于为目前的节节节节节节节节法, 方法,将Sal 方法用于为Storvadaltialtial 方法,将Sal-to 方法用于为Slational-stal-stal-sal-st 方法,将Sal-st-st-st-stal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-stal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-sal-ro节节节节节节