In manipulation tasks like plug insertion or assembly that have low tolerance to errors in pose estimation (errors of the order of 2mm can cause task failure), the utilization of touch/contact modality can aid in accurately localizing the object of interest. Motivated by this, in this work we model high-precision insertion tasks as planning problems under pose uncertainty, where we effectively utilize the occurrence of contacts (or the lack thereof) as observations to reduce uncertainty and reliably complete the task. We present a preprocessing-based planning framework for high-precision insertion in repetitive and time-critical settings, where the set of initial pose distributions (identified by a perception system) is finite. The finite set allows us to enumerate the possible planning problems that can be encountered online and preprocess a database of policies. Due to the computational complexity of constructing this database, we propose a general experience-based POMDP solver, E-RTDP-Bel, that uses the solutions of similar planning problems as experience to speed up planning queries and use it to efficiently construct the database. We show that the developed algorithm speeds up database creation by over a factor of 100, making the process computationally tractable. We demonstrate the effectiveness of the proposed framework in a real-world plug insertion task in the presence of port position uncertainty and a pipe assembly task in simulation in the presence of pipe pose uncertainty.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员