We study the role of information complexity in privacy leakage about an attribute of an adversary's interest, which is not known a priori to the system designer. Considering the supervised representation learning setup and using neural networks to parameterize the variational bounds of information quantities, we study the impact of the following factors on the amount of information leakage: information complexity regularizer weight, latent space dimension, the cardinalities of the known utility and unknown sensitive attribute sets, the correlation between utility and sensitive attributes, and a potential bias in a sensitive attribute of adversary's interest. We conduct extensive experiments on Colored-MNIST and CelebA datasets to evaluate the effect of information complexity on the amount of intrinsic leakage.
翻译:我们研究了信息复杂性在隐私泄露中对于敌方利益的一个属性的作用,这一点在系统设计者之前并不知道。考虑到监督的代表学习设置和使用神经网络对信息数量的变化界限进行参数化,我们研究了下列因素对信息泄漏数量的影响:信息复杂性、常规化器重量、潜在空间维度、已知效用和未知敏感属性的基点、实用性和敏感属性之间的相互关系,以及对手利益的一个敏感属性的潜在偏差。我们对有色-MNIST和CelibA数据集进行了广泛的实验,以评估信息复杂性对内在渗漏数量的影响。