We study the \emph{Bipartite Degree Realization} (BDR) problem: given a graphic degree sequence $D$, decide whether it admits a realization as a bipartite graph. While bipartite realizability for a fixed vertex partition can be decided in polynomial time via the Gale--Ryser theorem, the computational complexity of BDR without a prescribed partition remains unresolved. We address this question through a parameterized analysis. For constants $0 \le c_1 \le c_2 \le 1$, we define $\mathrm{BDR}_{c_1,c_2}$ as the restriction of BDR to degree sequences of length $n$ whose degrees lie in the interval $[c_1 n, c_2 n]$. Our main result shows that $\mathrm{BDR}_{c_1,c_2}$ is solvable in polynomial time whenever $0 \le c_1 \le c_2 \le \frac{\sqrt{c_1(c_1+4)}-c_1}{2}$, as well as for all $c_1 > \tfrac12$. The proof relies on a reduction to extremal \emph{least balanced degree sequences} and a detailed verification of the critical Gale--Ryser inequalities, combined with a bounded subset-sum formulation. We further show that, assuming the NP-completeness of unrestricted BDR, the problem $\mathrm{BDR}_{c_1,c_2}$ remains NP-complete for all $0 < c_2 < \tfrac12$ and $c_1 < 1 - c_2 - \sqrt{1-2c_2}$. Our results clarify the algorithmic landscape of bipartite degree realization and contribute to the broader study of potentially bipartite graphic degree sequences.
翻译:我们研究\textbf{二分图度序列可实现性}(BDR)问题:给定一个图度序列$D$,判断其是否可被实现为一个二分图。虽然对于固定顶点划分的二分图可实现性问题可通过Gale--Ryser定理在多项式时间内判定,但无预设划分的BDR问题的计算复杂度仍未解决。我们通过参数化分析来探讨这一问题。对于常数$0 \le c_1 \le c_2 \le 1$,定义$\mathrm{BDR}_{c_1,c_2}$为BDR问题在长度为$n$且所有度值位于区间$[c_1 n, c_2 n]$的度序列上的限制版本。我们的主要结果表明,当$0 \le c_1 \le c_2 \le \frac{\sqrt{c_1(c_1+4)}-c_1}{2}$以及所有$c_1 > \tfrac12$时,$\mathrm{BDR}_{c_1,c_2}$可在多项式时间内求解。证明依赖于对极值\textbf{最小平衡度序列}的归约,结合有界子集和问题的形式化表述,以及对关键Gale--Ryser不等式的详细验证。我们进一步证明,在假设无限制BDR问题为NP完全的前提下,对于所有满足$0 < c_2 < \tfrac12$且$c_1 < 1 - c_2 - \sqrt{1-2c_2}$的参数,问题$\mathrm{BDR}_{c_1,c_2}$仍保持NP完全性。我们的研究结果阐明了二分图度序列可实现性问题的算法图景,并为更广泛的潜在二分图度序列研究作出了贡献。