Recent advances in Big Data has prompted health care practitioners to utilize the data available on social media to discern sentiment and emotions expression. Health Informatics and Clinical Analytics depend heavily on information gathered from diverse sources. Traditionally, a healthcare practitioner will ask a patient to fill out a questionnaire that will form the basis of diagnosing the medical condition. However, medical practitioners have access to many sources of data including the patients writings on various media. Natural Language Processing (NLP) allows researchers to gather such data and analyze it to glean the underlying meaning of such writings. The field of sentiment analysis (applied to many other domains) depend heavily on techniques utilized by NLP. This work will look into various prevalent theories underlying the NLP field and how they can be leveraged to gather users sentiments on social media. Such sentiments can be culled over a period of time thus minimizing the errors introduced by data input and other stressors. Furthermore, we look at some applications of sentiment analysis and application of NLP to mental health. The reader will also learn about the NLTK toolkit that implements various NLP theories and how they can make the data scavenging process a lot easier.
翻译:《大数据》的最新进展促使保健从业人员利用社交媒体上的现有数据来辨别情绪和情绪表达;保健信息学和临床分析严重依赖从不同来源收集的信息;传统上,保健从业人员将要求病人填写一份问卷,作为诊断健康状况的基础;然而,医疗从业人员可以查阅许多数据来源,包括各种媒体上的病人文章;自然语言处理(NLP)使研究人员能够收集这些数据,并分析这些数据,以了解这类著作的基本含义;情绪分析领域(适用于许多其他领域)严重依赖NLP使用的技术。这项工作将研究作为NLP领域基础的各种流行理论,以及如何利用这些理论在社会媒体上收集用户的情绪。这种情绪可以在一段时间内被扼杀,从而尽量减少数据输入和其他压力因素带来的错误;此外,我们查看NLP的一些情绪分析应用,以及将NLP应用于心理健康。读者还将了解用于各种NLP理论的NLTK工具包,以及它们如何使数据更方便地进行滚动。