In this paper, we present a modular robotic system to tackle the problem of generating and performing antipodal robotic grasps for unknown objects from n-channel image of the scene. We propose a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel input at real-time speeds (~20ms). We evaluate the proposed model architecture on standard datasets and a diverse set of household objects. We achieved state-of-the-art accuracy of 97.7% and 94.6% on Cornell and Jacquard grasping datasets respectively. We also demonstrate a grasp success rate of 95.4% and 93% on household and adversarial objects respectively using a 7 DoF robotic arm.
翻译:在本文中,我们展示了一个模块式机器人系统,以解决生成和运行对现场正通道图像中未知物体的抗聚变机器人捕捉装置的问题。我们提出了一个新型的 " 生化残余神经网络 " (GR-ConvNet)模型,该模型可以实时速度(~20ms)从正通道输入中产生强大的抗聚变装置。我们评估了标准数据集和多种家用物体的拟议模型架构。我们在Cornell和Jacquard捕捉数据集方面分别实现了97.7%和94.6%的最新精确度。我们还展示了使用7DOF机器人臂在家庭和对抗物体上分别达到95.4%和93%的成功率。