Most design methods contain a forward framework, asking for primary specifications of a building to generate an output or assess its performance. However, architects urge for specific objectives though uncertain of the proper design parameters. Deep Learning (DL) algorithms provide an intelligent workflow in which the system can learn from sequential training experiments. This study applies a method using DL algorithms towards generating demanded design options. In this study, an object recognition problem is investigated to initially predict the label of unseen sample images based on training dataset consisting of different types of synthetic 2D shapes; later, a generative DL algorithm is applied to be trained and generate new shapes for given labels. In the next step, the algorithm is trained to generate a window/wall pattern for desired light/shadow performance based on the spatial daylight autonomy (sDA) metrics. The experiments show promising results both in predicting unseen sample shapes and generating new design options.
翻译:多数设计方法都包含前方框架,要求建筑物的主要规格以产生产出或评估其性能;然而,建筑师要求具体目标,尽管适当的设计参数不确定;深学习(DL)算法提供了一种智能工作流程,该系统可以从连续培训实验中学习;本研究采用一种使用DL算法产生要求的设计选项的方法;在这项研究中,对对象识别问题进行了调查,以初步预测基于由不同类型合成2D形状组成的培训数据集的看不见样本图像标签;随后,应用基因化DL算法进行培训,为特定标签创造新的形状;在下一步,根据空间日光自主度(sDA)衡量标准,对算法进行了培训,为理想的灯光/阴影性能生成窗口/墙型模式;实验显示在预测看不见样本形状和产生新的设计选项方面有希望的结果。