Flight delays hurt airlines, airports, and passengers. Their prediction is crucial during the decision-making process for all players of commercial aviation. Moreover, the development of accurate prediction models for flight delays became cumbersome due to the complexity of air transportation system, the number of methods for prediction, and the deluge of flight data. In this context, this paper presents a thorough literature review of approaches used to build flight delay prediction models from the Data Science perspective. We propose a taxonomy and summarize the initiatives used to address the flight delay prediction problem, according to scope, data, and computational methods, giving particular attention to an increased usage of machine learning methods. Besides, we also present a timeline of significant works that depicts relationships between flight delay prediction problems and research trends to address them. The published version of this paper is made available at \url{https://doi.org/10.1080/01441647.2020.1861123}. Please cite as: L. Carvalho, A. Sternberg, L. Maia Gon\c{c}alves, A. Beatriz Cruz, J.A. Soares, D. Brand\~ao, D. Carvalho, e E. Ogasawara, 2020, On the relevance of data science for flight delay research: a systematic review, Transport Reviews


翻译:此外,我们还提供了一份描述飞行延迟预测问题与应对这些问题的研究趋势之间关系的重要工作时间表。本文从数据科学角度对用于建立飞行延迟预测模型的方法进行了透彻的文献审查。我们建议根据范围、数据和计算方法进行分类,并概述用于解决飞行延迟预测问题的各项举措,同时特别注意更多地使用机器学习方法。此外,我们还提供了一份描述飞行延迟预测问题与应对这些问题的研究趋势之间关系的重要工作时间表。出版的本文可在以下网站查阅:https://doi.org/10.10.1080/0144747220202118123}。请参见:L.Carvalho、A. Sternberg、L. Maia Gon\c{c}salves、A. Beatriz Cruz、J.A. Soares、D. Brandãoaoo、D. Carharval、2020年系统飞行延迟数据审查:Egasional、2020年系统飞行延迟的A.

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
AAAI 2019 录用列表论文公布,清华58篇
专知
31+阅读 · 2019年1月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
15+阅读 · 2019年9月30日
VIP会员
相关VIP内容
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
AAAI 2019 录用列表论文公布,清华58篇
专知
31+阅读 · 2019年1月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年5月26日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
15+阅读 · 2019年9月30日
Top
微信扫码咨询专知VIP会员