Motivation: Cutting the cost of DNA sequencing technology led to a quantum leap in the availability of genomic data. While sharing genomic data across researchers is an essential driver of advances in health and biomedical research, the sharing process is often infeasible due to data privacy concerns. Differential privacy is one of the rigorous mechanisms utilized to facilitate the sharing of aggregate statistics from genomic datasets without disclosing any private individual-level data. However, differential privacy can still divulge sensitive information about the dataset participants due to the correlation between dataset tuples. Results: Here, we propose GenShare model built upon Laplace-perturbation-mechanism-based DP to introduce a privacy-preserving query-answering sharing model for statistical genomic datasets that include dependency due to the inherent correlations between genomes of individuals (i.e., family ties). We demonstrate our privacy improvement over the state-of-the-art approaches for a range of practical queries including cohort discovery, minor allele frequency, and chi^2 association tests. With a fine-grained analysis of sensitivity in the Laplace perturbation mechanism and considering joint distributions, GenShare results near-achieve the formal privacy guarantees permitted by the theory of differential privacy as the queries that computed over independent tuples (only up to 6% differences). GenShare ensures that query results are as accurate as theoretically guaranteed by differential privacy. For empowering the advances in different scientific and medical research areas, GenShare presents a path toward an interactive genomic data sharing system when the datasets include participants with familial relationships.


翻译:驱动力:降低DNA排序技术的成本导致基因组数据获取量的大幅飞跃。研究人员共享基因组数据是健康和生物医学研究进步的重要驱动力,但共享过程往往因数据隐私问题而不可行。差异隐私是用于促进分享基因组数据集综合统计数据而不披露任何私人个人数据的一种严格机制。然而,由于数据集图普尔之间的相互关系,不同的隐私仍然可以透露关于数据集参与者的敏感信息。结果:在这里,我们提议GenShare模型以Laplace-perturbation-mechanism DP为基础建立,以引入一个隐私保存问答共享模式,用于统计基因数据集,其中包括个人基因组(即家庭联系)之间内在关联造成的依赖性。我们展示了我们隐私在一系列实际查询中,包括群群间发现、小型超频频频率和chiel2关联测试等。我们提出了GenShare模型,在基于Laplace-perburbation-meancy-mecroom DP上引入了一种精细化的共享查询模型共享模型共享模型共享模式, 并且通过允许的精确的DNA分析结果,将数据分析结果纳入了精细分析。 将精度分析结果,作为基因系统,作为基因系统,通过基因组的精度分析,通过基因分析,通过基因分析,将数据分析,将数据分析,将数据分析结果的精度分析,将数据流化分析结果分析,将数据流分析结果分析,将数据流流化,将数据流流化分析结果的精度转化为的精确分析,将分析作为可测取。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员