The Internet of Things (IoT) devices generate massive data that contain a lot of valuable information. To enable efficient on-device data analysis, the mobile ad hoc computing (MAHC) is a promising solution. It allows IoT or other edge devices to share resources among each other via device-to-device communication links and carry out computation-intensive tasks in a collaborative manner. This paper investigates the vector convolution problem using computing nodes in a MAHC system. A novel dynamic coded convolution strategy with privacy awareness is developed to address the unique features of MAHC systems, including node heterogeneity, frequently changing network typologies, time-varying communication and computation resources. Simulation results show its high efficiency and resilience to uncertain stragglers.
翻译:物联网( IoT) 设备生成大量数据, 包含大量有价值的信息。 为了进行高效的在线数据分析, 移动临时计算( MAHC) 是一个很有希望的解决方案。 它允许 IoT 或其他边端设备通过设备对设备通信链接共享资源, 并合作执行计算密集型任务。 本文使用MAHC 系统中的计算节点来调查矢量变迁问题。 开发了一个具有隐私意识的新颖的动态编码变迁战略, 以解决MAHC 系统的独特性, 包括节点异性、 经常变化的网络类型、 时间变化的通信和计算资源。 模拟结果显示其高效性和弹性, 以及对于不确定的 straglers 的耐受力。