The growing use of social media has led to the development of several Machine Learning (ML) and Natural Language Processing(NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these MLand NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this paper, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications, namely (i) rumors detection, (ii) satires detection, (iii) clickbait & spams identification, (iv) hate speech detection, (v)misinformation detection, and (vi) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.
翻译:社交媒体的日益使用导致开发了多种机器学习和自然语言处理工具,处理前所未有的社交媒体内容,以作出可采取行动的决定;然而,这些MLand NLP算法被广泛证明很容易受到对抗性攻击;这些弱点使对手能够在社交媒体文本处理的不同应用中对这些算法发起一套多种多样的对抗性攻击;在本文件中,我们全面审查了社交媒体应用中对抗性攻击和防御的主要方法,特别侧重于关键挑战和未来研究方向;我们详细介绍了关于六种关键应用的文献,即:(一) 发现谣言,(二) 检测讽刺,(三) 点击bait & spams识别,(四) 仇恨言论检测,(五) 错误信息检测,以及(六) 情绪分析。然后,我们着重介绍了同时存在和预期的未来研究问题,并为未来工作提供建议和方向。