We consider hereditary classes of graphs equipped with a total order. We provide multiple equivalent characterisations of those classes which have bounded twin-width. In particular, we prove a grid theorem for classes of ordered graphs which have unbounded twin-width. From this we derive that the model-checking problem for first-order logic is fixed-parameter tractable over a hereditary class of ordered graphs if, and -- under common complexity-theoretic assumptions -- only if the class has bounded twin-width. For hereditary classes of ordered graphs, we show that bounded twin-width is equivalent to the NIP property from model theory, as well as the smallness condition from enumerative combinatorics. We prove the existence of a gap in the growth of hereditary classes of ordered graphs. Furthermore, we provide a grid theorem which applies to all monadically NIP classes of structures (ordered or unordered), or equivalently, classes which do not transduce the class of all finite graphs.
翻译:我们考虑的是配有总顺序的图解的世系类别。 我们为那些捆绑双宽的图表提供多重等同特性。 特别是, 我们证明对于没有绑定双宽的定序图的类别来说, 我们证明了一个网格理论。 我们从中推断出, 用于第一顺序逻辑的模型检查问题, 是固定的参数, 相对于一个定序图的世系类别来说, 如果并且 -- -- 根据共同的复杂理论假设 -- -- 只有当该类别已经绑定双宽的世系。 对于定序图的世系类别来说, 我们显示, 捆绑双维相当于来自模型理论的NIP属性, 以及来自数字组合学的狭小条件。 我们证明, 在定序图的世系类别增长中存在着差距。 此外, 我们提供了一个网格参数, 适用于所有单调的NIP结构类别( 定序的或无序的), 或等同, 并不转换所有定序图的类别 。