Urban trees help regulate temperature, reduce energy consumption, improve urban air quality, reduce wind speeds, and mitigating the urban heat island effect. Urban trees also play a key role in climate change mitigation and global warming by capturing and storing atmospheric carbon-dioxide which is the largest contributor to greenhouse gases. Automated tree detection and species classification using aerial imagery can be a powerful tool for sustainable forest and urban tree management. Hence, This study first offers a pipeline for generating labelled dataset of urban trees using Google Map's aerial images and then investigates how state of the art deep Convolutional Neural Network models such as VGG and ResNet handle the classification problem of urban tree aerial images under different parameters. Experimental results show our best model achieves an average accuracy of 60% over 6 tree species.
翻译:城市树木有助于调节温度,减少能源消耗,改善城市空气质量,降低风速,减轻城市热岛效应。城市树木通过捕捉和储存大气二氧化碳,在减缓气候变化和全球升温方面也发挥着关键作用,大气二氧化碳是温室气体的最大来源。利用空中图像自动检测树木和物种分类可以成为可持续森林和城市树木管理的有力工具。因此,本研究首先提供了一个管道,利用谷歌地图的空中图像生成有标签的城市树木数据集,然后调查诸如VGG和ResNet等最先进的革命性神经网络模型如何在不同参数下处理城市树木空中图像的分类问题。实验结果表明,我们的最佳模型平均达到6个树种的60%以上。