In this paper we discuss a deterministic form of ensemble Kalman inversion as a regularization method for linear inverse problems. By interpreting ensemble Kalman inversion as a low-rank approximation of Tikhonov regularization, we are able to introduce a new sampling scheme based on the Nystr\"om method that improves practical performance. Furthermore, we formulate an adaptive version of ensemble Kalman inversion where the sample size is coupled with the regularization parameter. We prove that the proposed scheme yields an order optimal regularization method under standard assumptions if the discrepancy principle is used as a stopping criterion. The paper concludes with a numerical comparison of the discussed methods for an inverse problem of the Radon transform.
翻译:暂无翻译