Pulmonary Embolism (PE) are a leading cause of cardiovascular death. Computed tomographic pulmonary angiography (CTPA) is the gold standard for PE diagnosis, with growing interest in AI-based diagnostic assistance. However, these algorithms are limited by scarce fine-grained annotations of thromboembolic burden. We address this challenge with iExplain, a weakly supervised learning algorithm that transforms coarse image-level annotations into detailed pixel-level PE masks through iterative model explainability. Our approach generates soft segmentation maps used to mask detected regions, enabling the process to repeat and discover additional embolisms that would be missed in a single pass. This iterative refinement effectively captures complete PE regions and detects multiple distinct embolisms. Models trained on these automatically generated annotations achieve excellent PE detection performance, with significant improvements at each iteration. We demonstrate iExplain's effectiveness on the RSPECT augmented dataset, achieving results comparable to strongly supervised methods while outperforming existing weakly supervised methods.


翻译:肺栓塞(PE)是心血管死亡的主要原因之一。计算机断层扫描肺血管造影(CTPA)是诊断肺栓塞的金标准,基于人工智能的诊断辅助技术日益受到关注。然而,这些算法受限于血栓负荷细粒度标注的稀缺性。为解决这一挑战,我们提出了iExplain——一种弱监督学习算法,通过迭代模型可解释性将粗粒度的图像级标注转化为精细的像素级肺栓塞掩码。该方法生成软分割图,用于遮蔽检测区域,使过程能够重复进行并发现单次遍历中可能遗漏的附加栓塞。这种迭代优化有效捕获完整的肺栓塞区域并检测多个独立栓塞。基于这些自动生成标注训练的模型实现了优异的肺栓塞检测性能,每次迭代均有显著提升。我们在RSPECT增强数据集上验证了iExplain的有效性,其性能与强监督方法相当,同时优于现有弱监督方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员