Motivated by questions from program transformations, eight notions of isomorphisms between term rewriting systems are defined, analysed, and classified. The notions include global isomorphisms, where the renaming of variables and function symbols is the same for all term rewriting rules of the system, local ones, where a single renaming for every rule is used, and a combination, where one symbol set is renamed globally while the other set is renamed locally. Preservation of semantic properties like convertibility and termination is analysed for the different isomorphism notions. The notions of templates and maximal normal forms of term rewriting systems are introduced and algorithms to efficiently compute them are presented. Equipped with these techniques, the complexity of the underlying decision problems of the isomorphisms are analysed and either shown to be efficiently solvable or proved to be complete for the graph isomorphism complexity class.
翻译:受程序转换问题驱动,定义、分析和分类了术语重写系统之间的八种异形概念。这些概念包括:全球异式概念,变量和函数符号的重新命名对系统的所有术语重写规则都是一样的;本地的变量和函数符号的重新命名对系统的所有术语重写规则都是一样的;本地的变量和函数符号的重新命名对每个规则都使用单一的重命名;组合,一个符号集被全球重新命名,而另一个符号集则被本地重新命名;为不同的异形概念分析了可互换性和终止等语义特性的保存;引入了模板和最大通常的术语重写形式的概念,并提出了有效计算这些概念的算法。用这些技术对异形定义的基本决定问题的复杂性进行了分析,或者表明其具有高效率的可溶性,或者被证明对图表的异形复杂类别来说是完整的。