Security Orchestration, Automation, and Response (SOAR) platforms integrate and orchestrate a wide variety of security tools to accelerate the operational activities of Security Operation Center (SOC). Integration of security tools in a SOAR platform is mostly done manually using APIs, plugins, and scripts. SOC teams need to navigate through API calls of different security tools to find a suitable API to define or update an incident response action. Analyzing various types of API documentation with diverse API format and presentation structure involves significant challenges such as data availability, data heterogeneity, and semantic variation for automatic identification of security tool APIs specific to a particular task. Given these challenges can have negative impact on SOC team's ability to handle security incident effectively and efficiently, we consider it important to devise suitable automated support solutions to address these challenges. We propose a novel learning-based framework for automated security tool API Recommendation for security Orchestration, automation, and response, APIRO. To mitigate data availability constraint, APIRO enriches security tool API description by applying a wide variety of data augmentation techniques. To learn data heterogeneity of the security tools and semantic variation in API descriptions, APIRO consists of an API-specific word embedding model and a Convolutional Neural Network (CNN) model that are used for prediction of top 3 relevant APIs for a task. We experimentally demonstrate the effectiveness of APIRO in recommending APIs for different tasks using 3 security tools and 36 augmentation techniques. Our experimental results demonstrate the feasibility of APIRO for achieving 91.9% Top-1 Accuracy.
翻译:安全操作、自动化和反应(SOAR)平台整合和安排各种各样的安全工具,以加快安全行动中心(SOC)的业务活动。将安全工具纳入SOAR平台,主要是使用API、插件和脚本手工操作。SOC团队需要通过API的不同安全工具的呼声浏览,以找到合适的API定义或更新事件应对行动。用不同的API格式和演示结构分析各类API文件,涉及重大挑战,如数据提供、数据异质性和自动识别安全工具的语义变异性,具体针对特定任务。鉴于这些挑战可能对SOAR平台有效处理安全事件的能力产生消极影响,我们认为必须设计适当的自动支持解决方案,以应对这些挑战。我们提出了一个新的基于学习的框架,用于安全惯性、自动化和反应的API建议。为了减少数据的可获取性制约,API将安全工具API的描述通过应用广泛的数据性价异性 CN AL API 任务, 用于使用ALIA的高级安全性变现工具。