Markov state models (MSMs) have been broadly adopted for analyzing molecular dynamics trajectories, but the approximate nature of the models that results from coarse-graining into discrete states is a long-known limitation. We show theoretically that, despite the coarse graining, in principle MSM-like analysis can yield unbiased estimation of key observables. We describe unbiased estimators for equilibrium state populations, for the mean first-passage time (MFPT) of an arbitrary process, and for state committors - i.e., splitting probabilities. Generically, the estimators are only asymptotically unbiased but we describe how extension of a recently proposed reweighting scheme can accelerate relaxation to unbiased values. Exactly accounting for 'sliding window' averaging over finite-length trajectories is a key, novel element of our analysis. In general, our analysis indicates that coarse-grained MSMs are asymptotically unbiased for steady-state properties only when appropriate boundary conditions (e.g., source-sink for MFPT estimation) are applied directly to trajectories, prior to calculation of the appropriate transition matrix.
翻译:马尔科夫州模型(MSMM)已被广泛采用,用于分析分子动态轨迹,但是,由于粗重重划入离散状态而形成的模型的大致性质是一个长期已知的限制。我们从理论上表明,尽管粗粗的谷物,原则上MS-类似分析可以产生对关键观测值的不偏倚的估计。我们描述均衡状态人口、任意过程的平均第一途程(MFPT)和国家承诺者(即分裂概率)的不偏差估计值。一般而言,估计器只是暂时的,但我们描述最近提议的重加权计划的延伸如何能加速向不偏倚值的放松。准确计算平均超过长轨迹的“滑动窗口”是我们分析的一个关键和新颖的要素。我们的分析表明,在适当的边界条件(例如MFPT估算的源-ink)之前,对稳定状态特性而言,粗重的MSMMMMs只有在适当的边界条件(例如,用于MFPT估算的源-in-ink)才会直接应用到轨迹前的计算。