Software testing is essential for the reliable development of complex software systems. A key step in software testing is fault localization, which uses test data to pinpoint failure-inducing combinations for further diagnosis. Existing fault localization methods, however, are largely deterministic, and thus do not provide a principled approach for assessing probabilistic risk of potential root causes, or for integrating domain and/or structural knowledge from test engineers. To address this, we propose a novel Bayesian fault localization framework called BayesFLo, which leverages a flexible Bayesian model on potential root cause combinations. A key feature of BayesFLo is its integration of the principles of combination hierarchy and heredity, which capture the structured nature of failure-inducing combinations. A critical challenge, however, is the sheer number of potential root cause scenarios to consider, which renders the computation of posterior root cause probabilities infeasible even for small software systems. We thus develop new algorithms for efficient computation of such probabilities, leveraging recent tools from integer programming and graph representations. We then demonstrate the effectiveness of BayesFLo over state-of-the-art fault localization methods, in a suite of numerical experiments and in two motivating case studies on the JMP XGBoost interface.
翻译:暂无翻译