Due to the rise of Industrial Control Systems (ICSs) cyber-attacks in the recent decade, various security frameworks have been designed for anomaly detection. While advanced ICS attacks use sequential phases to launch their final attacks, existing anomaly detection methods can only monitor a single source of data. Therefore, analysis of multiple security data can provide comprehensive and system-wide anomaly detection in industrial networks. In this paper, we propose an anomaly detection framework for ICSs that consists of two stages: i) blockchain-based log management where the logs of ICS devices are collected in a secure and distributed manner, and ii) multi-source anomaly detection where the blockchain logs are analysed using multi-source deep learning which in turn provides a system wide anomaly detection method. We validated our framework using two ICS datasets: a factory automation dataset and a Secure Water Treatment (SWAT) dataset. These datasets contain physical and network level normal and abnormal traffic. The performance of our new framework is compared with single-source machine learning methods. The precision of our framework is 95% which is comparable with single-source anomaly detectors.
翻译:由于工业控制系统(ICS)网络攻击最近十年的兴起,设计了各种安全框架,以探测异常点;先进的ICS攻击使用连续阶段来发起最后攻击,而现有的异常点探测方法只能监测单一的数据源;因此,对多个安全数据的分析可以提供工业网络中全面和全系统的异常点探测;在本文件中,我们建议为ICS建立一个异常点探测框架,分为两个阶段:一) 以链式记录为基础,以安全和分布方式收集ICS装置的日志;二) 多源异常点探测,利用多源深层学习对块状链记录进行分析,从而提供系统范围的异常点探测方法。我们使用ICS的两个数据集,即工厂自动化数据集和安全水处理数据集(SWAT)验证了我们的框架。这些数据集包含物理和网络水平正常和异常流量。我们的新框架的性能与单一来源机器学习方法进行了比较。我们框架的精确度为95%,与单一来源异常点探测器相近。