The use of NLP in the realm of financial technology is broad and complex, with applications ranging from sentiment analysis and named entity recognition to question answering. Large Language Models (LLMs) have been shown to be effective on a variety of tasks; however, no LLM specialized for the financial domain has been reported in literature. In this work, we present BloombergGPT, a 50 billion parameter language model that is trained on a wide range of financial data. We construct a 363 billion token dataset based on Bloomberg's extensive data sources, perhaps the largest domain-specific dataset yet, augmented with 345 billion tokens from general purpose datasets. We validate BloombergGPT on standard LLM benchmarks, open financial benchmarks, and a suite of internal benchmarks that most accurately reflect our intended usage. Our mixed dataset training leads to a model that outperforms existing models on financial tasks by significant margins without sacrificing performance on general LLM benchmarks. Additionally, we explain our modeling choices, training process, and evaluation methodology. As a next step, we plan to release training logs (Chronicles) detailing our experience in training BloombergGPT.
翻译:自然语言处理在金融科技领域中的应用十分广泛和复杂,包括情感分析和实体识别等任务。大型语言模型(LLMs)已被证明在各种任务上非常有效;然而,领域特定的金融语言模型在文献中尚未被报道。在本研究中,我们提出了BloombergGPT,这是一个基于大量金融数据训练的500亿参数语言模型。我们构建了一个基于Bloomberg丰富的数据源的3630亿标记数据集,这可能是目前最大的特定领域数据集,并增加了来自通用数据集的3450亿标记。我们在标准LLM基准测试、公开金融基准测试和一套最能反映我们预期用途的内部基准测试上验证了BloombergGPT。我们的混合数据集训练导致一个在金融任务上表现出显著优势的模型,而不牺牲在通用LLM基准测试上的性能。此外,我们解释了我们的建模选择、训练过程和评估方法。作为下一步,我们计划发布训练日志(Chronicles),详细说明我们在训练BloombergGPT过程中的经验。