Stellar and AGN-driven feedback processes affect the distribution of gas on a wide range of scales, from within galaxies well into the intergalactic medium. Yet, it remains unclear how feedback, through its connection to key galaxy properties, shapes the radial gas density profile in the host halo. We tackle this question using suites of the EAGLE, IllustrisTNG, and Simba cosmological hydrodynamical simulations, which span a variety of feedback models. We develop a random forest algorithm that predicts the radial gas density profile within haloes from the total halo mass and five global properties of the central galaxy: gas and stellar mass; star formation rate; mass and accretion rate of the central black hole (BH). The algorithm reproduces the simulated gas density profiles with an average accuracy of $\sim$80-90% over the halo mass range $10^{9.5} \, \mathrm{M}_{\odot} < M_{\rm 200c} < 10^{15} \, \mathrm{M}_{\odot}$ and redshift interval $0<z<4$. For the first time, we apply Sobol statistical sensitivity analysis to full cosmological hydrodynamical simulations, quantifying how each feature affects the gas density as a function of distance from the halo centre. Across all simulations and redshifts, the total halo mass and the gas mass of the central galaxy are the most strongly tied to the halo gas distribution, while stellar and BH properties are generally less informative. The exact relative importance of the different features depends on the feedback scenario and redshift. Our framework can be readily embedded in semi-analytic models of galaxy formation to incorporate halo gas density profiles consistent with different hydrodynamical simulations. Our work also provides a proof of concept for constraining feedback models with future observations of galaxy properties and of the surrounding gas distribution.
翻译:恒星与活动星系核驱动的反馈过程影响着从星系内部直至星系际介质的广阔尺度上的气体分布。然而,反馈如何通过与关键星系性质的联系塑造宿主晕内径向气体密度剖面,目前仍不明确。我们利用涵盖多种反馈模型的EAGLE、IllustrisTNG和Simba宇宙学流体动力学模拟套件研究该问题。我们开发了一种随机森林算法,该算法通过总晕质量及中央星系的五个全局性质(气体质量、恒星质量、恒星形成率、中央黑洞质量及其吸积率)预测晕内径向气体密度剖面。该算法在晕质量范围$10^{9.5} \, \mathrm{M}_{\odot} < M_{\rm 200c} < 10^{15} \, \mathrm{M}_{\odot}$和红移区间$0<z<4$内,以平均约80-90%的精度复现了模拟气体密度剖面。我们首次将Sobol统计敏感性分析应用于完整宇宙学流体动力学模拟,量化了各特征如何影响随晕心距离变化的气体密度。在所有模拟和红移条件下,总晕质量与中央星系气体质量对晕气体分布的关联性最强,而恒星与黑洞性质通常信息量较低。不同特征的相对重要性具体取决于反馈场景与红移。我们的框架可便捷嵌入星系形成的半解析模型,以纳入与不同流体动力学模拟相一致的晕气体密度剖面。本研究亦为利用未来星系性质及周围气体分布的观测数据约束反馈模型提供了概念验证。