Accurate calculation of aircraft fuel consumption plays an irreplaceable role in flight operations, optimization, and pollutant accounting. Calculating aircraft fuel consumption accurately is tricky because it changes based on different flying conditions and physical factors. Utilizing flight surveillance data, this study developed a comprehensive mathematical framework and established a link between flight dynamics and fuel consumption, providing a set of high-precision, high-resolution fuel calculation methods. It also allows other practitioners to select data sources according to specific needs through this framework. The methodology begins by addressing the functional aspects of interval fuel consumption. We apply spectral transformation techniques to mine Automatic Dependent Surveillance-Broadcast (ADS-B) data, identifying key aspects of the flight profile and establishing their theoretical relationships with fuel consumption. Subsequently, a deep neural network with tunable parameters is used to fit this multivariate function, facilitating high-precision calculations of interval fuel consumption. Furthermore, a second-order smooth monotonic interpolation method was constructed along with a novel estimation method for instantaneous fuel consumption. Numerical results have validated the effectiveness of the model. Using ADS-B and Aircraft Communications Addressing and Reporting System (ACARS) data from 2023 for testing, the average error of interval fuel consumption can be reduced to as low as $3.31\%$, and the error in the integral sense of instantaneous fuel consumption is $8.86\%$. These results establish this model as the state of the art, achieving the lowest estimation errors in aircraft fuel consumption calculations to date.
翻译:暂无翻译