Across the United States, a growing number of school districts are turning to matching algorithms to assign students to public schools. The designers of these algorithms aimed to promote values such as transparency, equity, and community in the process. However, school districts have encountered practical challenges in their deployment. In fact, San Francisco Unified School District voted to stop using and completely redesign their student assignment algorithm because it was not promoting educational equity in practice. We analyze this system using a Value Sensitive Design approach and find that one reason values are not met in practice is that the system relies on modeling assumptions about families' priorities, constraints, and goals that clash with the real world. These assumptions overlook the complex barriers to ideal participation that many families face, particularly because of socioeconomic inequalities. We argue that direct, ongoing engagement with stakeholders is central to aligning algorithmic values with real world conditions. In doing so we must broaden how we evaluate algorithms while recognizing the limitations of purely algorithmic solutions in addressing complex socio-political problems.


翻译:在美国各地,越来越多的学区正在转向匹配算法,将学生分配到公立学校。这些算法的设计者旨在在此过程中促进透明度、公平和社区等价值观。然而,学区在部署过程中遇到了实际挑战。事实上,旧金山统一学校区投票停止使用和彻底重新设计学生分配算法,因为它没有在实践中促进教育平等。我们采用 " 价值敏感设计 " 方法来分析这个系统,发现在实践中没有达到一个原因值,那就是该系统依赖于对家庭优先事项、制约因素和与现实世界相冲突的目标的模型假设。这些假设忽略了许多家庭在理想参与方面面临的复杂障碍,特别是因为社会经济不平等。我们认为,与利益攸关方的直接、持续接触对于使算法价值与现实世界条件相一致至关重要。在这样做时,我们必须扩大我们评估算法的方法,同时认识到在解决复杂的社会政治问题时纯粹算法解决办法的局限性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员