We present a universal construction that relates reversible dynamics on open systems to arbitrary dynamics on closed systems: the well-pointed restriction affine completion of a monoidal restriction category. This categorical completion encompasses both quantum channels, via Stinespring dilation, and classical computing, via Bennett's method. Moreover, in these two cases, we show how our construction can be 'undone' by a further universal construction. This shows how both mixed quantum theory and classical computation rest on entirely reversible foundations.
翻译:我们展示了一种普遍的构造,把开放系统的可逆动态与封闭系统的任意动态联系起来:一个单项限制类别的明确限制接近完成。 这一绝对完成既包括量子渠道,即通过 Stinespring Exlation,也包括通过Bennett 方法的经典计算。 此外,在这两个例子中,我们展示了我们的构建如何通过进一步的普遍建设“脱颖而出 ” 。 这显示了混合量子理论和传统计算如何建立在完全可逆的基础上。