Despite the central role of self-assembled groups in animal and human societies, statistical tools to explain their composition are limited. We introduce a statistical framework for cross-sectional observations of groups with exclusive membership to illuminate the social and organizational mechanisms that bring people together. Drawing from stochastic models for networks and partitions, the proposed framework introduces an exponential family of distributions for partitions. We derive its main mathematical properties and suggest strategies to specify and estimate such models. A case study on hackathon events applies the developed framework to the study of mechanisms underlying the formation of self-assembled project teams.
翻译:尽管动物和人类社会中自我集合的群体起着核心作用,但解释其构成的统计工具有限,我们引入了一个统计框架,用于对专门成员群体进行跨部门观察,以阐明将人聚集在一起的社会和组织机制。从网络和分区的随机模型中,拟议框架引入了分块分布指数式组合。我们从中得出其主要数学特性,并提出具体确定和估计这些模型的战略。关于黑客事件的案例研究将开发的框架用于研究组建自我组合的项目小组所依据的机制。