With the popularity of mobile devices and the development of geo-positioning technology, location-based services (LBS) attract much attention and top-k spatial keyword queries become increasingly complex. It is common to see that clients issue a query to find a restaurant serving pizza and steak, low in price and noise level particularly. However, most of prior works focused only on the spatial keyword while ignoring these independent numerical attributes. In this paper we demonstrate, for the first time, the Attributes-Aware Spatial Keyword Query (ASKQ), and devise a two-layer hybrid index structure called Quad-cluster Dual-filtering R-Tree (QDR-Tree). In the keyword cluster layer, a Quad-Cluster Tree (QC-Tree) is built based on the hierarchical clustering algorithm using kernel k-means to classify keywords. In the spatial layer, for each leaf node of the QC-Tree, we attach a Dual-Filtering R-Tree (DR-Tree) with two filtering algorithms, namely, keyword bitmap-based and attributes skyline-based filtering. Accordingly, efficient query processing algorithms are proposed. Through theoretical analysis, we have verified the optimization both in processing time and space consumption. Finally, massive experiments with real-data demonstrate the efficiency and effectiveness of QDR-Tree.
翻译:随着移动设备的普及和地理定位技术的开发,基于位置的服务吸引了许多注意力,而上方空间关键词查询也变得日益复杂。客户通常会发出查询,寻找一家餐馆,服务于披萨和牛排,价格低,特别是噪音水平低。然而,大多数先前的工作仅侧重于空间关键词,而忽略了这些独立的数值属性。在本文件中,我们首次展示了属性-Aware空间关键字查询(ASKQ),并设计了两层混合指数结构,称为四轮组合双过滤双过滤R-Tree(QDR-Tree)。在关键词组层中,四轮组合树(QC-Tree)是根据等级组合算法构建的,使用内核K手段对关键字进行分类。在空间层中,我们第一次展示了“QC-Tree”的每个叶节节点,我们附上了一种双向开式R-Tree(DR-Tree)混合指数结构结构结构结构,配有两种过滤器算法,即“基”和“基数位式”快速智能分析,通过“数据”和“最终分析,通过“数据分析”和“Sqre”系统进行实时分析。在“Sqre”和“Sqreal-traal-traal-traal-traal-traal-traal-traal-traal-traal-tra”系统进行真正的“Squal-tra”和“Squal-tra”的“Syal-traal-traal-traal-traal-tragalgalmadalgalgal-tragal”和“Squal-tra”分析。