We study the logic obtained by endowing the language of first-order arithmetic with second-order measure quantifiers. This new kind of quantification allows us to express that the argument formula is true in a certain portion of all possible interpretations of the quantified variable. We show that first-order arithmetic with measure quantifiers is capable of formalizing simple results from probability theory and, most importantly, of representing every recursive random function. Moreover, we introduce a realizability interpretation of this logic in which programs have access to an oracle from the Cantor space.
翻译:我们的研究逻辑是通过将一阶算术的语言与二阶计量量化符联系起来而获得的。 这种新型的量化让我们能够表达,在量化变量所有可能解释的某一部分中,参数公式是真实的。 我们显示,一阶算术加上计量量化符能够将概率理论的简单结果正规化,最重要的是代表每个循环随机函数。 此外,我们引入了一种真实的逻辑解释,使程序能够从坎托尔空间进入一个神器。