We present the first formal correctness proof of Edmonds' blossom shrinking algorithm for maximum cardinality matching in general graphs. We focus on formalising the mathematical structures and properties that allow the algorithm to run in worst-case polynomial running time. We formalise Berge's lemma, blossoms and their properties, and a mathematical model of the algorithm, showing that it is totally correct. We provide the first detailed proofs of many of the facts underlying the algorithm's correctness.
翻译:本文首次对Edmonds在一般图中求解最大基数匹配的开花收缩算法进行了形式化正确性证明。研究重点在于形式化使算法在最坏情况下具有多项式运行时间的数学结构与性质。我们形式化了Berge引理、开花结构及其性质,并构建了算法的数学模型,证明其具备完全正确性。针对算法正确性所依赖的诸多基础事实,本研究首次提供了详细证明。