In this paper, we describe our approach for the Podcast Summarisation challenge in TREC 2020. Given a podcast episode with its transcription, the goal is to generate a summary that captures the most important information in the content. Our approach consists of two steps: (1) Filtering redundant or less informative sentences in the transcription using the attention of a hierarchical model; (2) Applying a state-of-the-art text summarisation system (BART) fine-tuned on the Podcast data using a sequence-level reward function. Furthermore, we perform ensembles of three and nine models for our submission runs. We also fine-tune the BART model on the Podcast data as our baseline. The human evaluation by NIST shows that our best submission achieves 1.777 in the EGFB scale, while the score of creator-provided description is 1.291. Our system won the Spotify Podcast Summarisation Challenge in the TREC2020 Podcast Track in both human and automatic evaluation.


翻译:在本文中,我们描述了我们应对2020年播客总结挑战的方法。根据一个播客插图集及其抄录,我们的目标是生成一个摘要,捕捉内容中最重要的信息。我们的方法包括两个步骤:(1) 利用一个等级模式的注意,在抄录中过滤冗余或信息较少的句子;(2) 运用一个最先进的文本总结系统,使用一个序列级奖励功能,对播客数据进行微调。此外,我们还对我们的提交进行三、九种模型的组合。我们还将播客数据上的BART模型作为我们的基线进行微调。 NIST的人类评估表明,我们提交的最佳版本在EGFB比额表中达到了1.777,而创造者提供的描述评分为1.291。我们的系统在人文和自动评价中赢得了TREC2020年播客轨道上的Podcast Summarization挑战。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【ACL2020】端到端语音翻译的课程预训练
专知会员服务
6+阅读 · 2020年7月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
已删除
将门创投
4+阅读 · 2017年12月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
ActivityNet Challenge 2017 冠军方案分享
极市平台
4+阅读 · 2017年7月25日
Arxiv
8+阅读 · 2021年2月1日
Arxiv
5+阅读 · 2019年8月22日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【ACL2020】端到端语音翻译的课程预训练
专知会员服务
6+阅读 · 2020年7月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
13+阅读 · 2018年4月27日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
已删除
将门创投
4+阅读 · 2017年12月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
ActivityNet Challenge 2017 冠军方案分享
极市平台
4+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员