Robotic manipulation of unknown objects is an important field of research. Practical applications occur in many real-world settings where robots need to interact with an unknown environment. We tackle the problem of reactive grasping by proposing a method for unknown object tracking, grasp point sampling and dynamic trajectory planning. Our object tracking method combines Siamese Networks with an Iterative Closest Point approach for pointcloud registration into a method for 6-DoF unknown object tracking. The method does not require further training and is robust to noise and occlusion. We propose a robotic manipulation system, which is able to grasp a wide variety of formerly unseen objects and is robust against object perturbations and inferior grasping points.
翻译:机器人操纵未知物体是一个重要的研究领域。 实际应用发生在许多现实世界环境中,机器人需要与未知环境互动。 我们通过提出一种未知物体跟踪、抓取点取样和动态轨迹规划的方法来解决被动捕捉问题。 我们的物体跟踪方法将暹罗网络与一个循环近点方法结合起来,将点球登记到一个6-DoF未知物体跟踪方法中。 该方法不需要进一步的培训,而且对噪音和隔离具有很强性。 我们提出一个机器人操作系统,它能够捕捉各种先前看不见的物体,并且能够对物体的扰动和低级抓取点进行强大的控制。