3D die stacking has often been proposed to build large-scale DRAM-based caches. Unfortunately, the power and performance overheads of DRAM limit the efficiency of high-bandwidth memories. Also, DRAM is facing serious scalability challenges that make alternative technologies more appealing. This paper examines Monarch, a resistive 3D stacked memory based on a novel reconfigurable crosspoint array called XAM. The XAM array is capable of switching between random access and content-addressable modes, which enables Monarch (i) to better utilize the in-package bandwidth and (ii) to satisfy both the random access memory and associative search requirements of various applications. Moreover, the Monarch controller ensures a given target lifetime for the resistive stack. Our simulation results on a set of parallel memory-intensive applications indicate that Monarch outperforms an ideal DRAM caching by 1.21x on average. For in-memory hash table and string matching workloads, Monarch improves performance up to 12x over the conventional high bandwidth memories.
翻译:3D 堆放堆放往往被提议用于建立大型 DRAM 缓存。 不幸的是, DRAM 的力量和性能管理控制器限制了高带宽记忆的效率。 此外, DRAM 面临着严重的可扩缩性挑战,使得替代技术更具吸引力。 本文审视了以新颖的可重新配置的交叉点阵列XAM为基础的3D 耐冲堆放存储器。 XAM 阵列能够转换随机访问和内容可处理模式,使 Monarch (一) 更好地利用包装带宽,以及 (二) 满足各种应用程序的随机访问记忆和关联搜索要求。 此外, Monarch 控制器确保了抵抗堆的指定寿命。 我们在一组平行的记忆密集应用上的模拟结果显示, Monarch 超越了平均1.2x 的理想 DRAM 缩放速度。 因为内表和字符串与工作量匹配, Monarch 将常规高频带记忆的性能提高到12x。