Rockfalls are a hazard for the safety of infrastructure as well as people. Identifying loose rocks by inspection of slopes adjacent to roadways and other infrastructure and removing them in advance can be an effective way to prevent unexpected rockfall incidents. This paper proposes a system towards an automated inspection for potential rockfalls. A robot is used to repeatedly strike or tap on the rock surface. The sound from the tapping is collected by the robot and subsequently classified with the intent of identifying rocks that are broken and prone to fall. Principal Component Analysis (PCA) of the collected acoustic data is used to recognize patterns associated with rocks of various conditions, including intact as well as rock with different types and locations of cracks. The PCA classification was first demonstrated simulating sounds of different characteristics that were automatically trained and tested. Secondly, a laboratory test was conducted tapping rock specimens with three different levels of discontinuity in depth and shape. A real microphone mounted on the robot recorded the sound and the data were classified in three clusters within 2D space. A model was created using the training data to classify the reminder of the data (the test data). The performance of the method is evaluated with a confusion matrix.


翻译:通过检查公路和其他基础设施附近的坡坡和其他基础设施,发现松散的岩石,并提前拆除松散的岩石,可以有效地防止意外的岩崩事件。本文件提议了一个系统,对潜在的岩崩进行自动检查。机器人用来对岩石表面进行反复的撞击或敲打。钻探的声音由机器人收集,随后进行分类,目的是查明碎裂和易坠落的岩石。所收集的声学数据的主要成分分析(PCA)用来识别与各种条件的岩石有关的模式,包括完整无缺的岩石以及不同类型和裂缝地点的岩石。CPA分类首先展示了不同特征的模拟声音,这些声音是自动培训和测试的。第二,进行了实验室测试,对深度和形状有三种不同程度不连续的岩石标本进行了抽取。安装在机器人上的真正麦克风记录了声音,并将数据分类在2D空间的三组中。创建了一个模型,用培训数据来对数据的提醒进行分类(测试数据)。方法的性能以混乱的矩阵进行评估。

0
下载
关闭预览

相关内容

ACM应用感知TAP(ACM Transactions on Applied Perception)旨在通过发表有助于统一这些领域研究的高质量论文来增强计算机科学与心理学/感知之间的协同作用。该期刊发表跨学科研究,在跨计算机科学和感知心理学的任何主题领域都具有重大而持久的价值。所有论文都必须包含感知和计算机科学两个部分。主题包括但不限于:视觉感知:计算机图形学,科学/数据/信息可视化,数字成像,计算机视觉,立体和3D显示技术。听觉感知:听觉显示和界面,听觉听觉编码,空间声音,语音合成和识别。触觉:触觉渲染,触觉输入和感知。感觉运动知觉:手势输入,身体运动输入。感官感知:感官整合,多模式渲染和交互。 官网地址:http://dblp.uni-trier.de/db/journals/tap/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
13+阅读 · 2021年3月3日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
谷歌足球游戏环境使用介绍
CreateAMind
33+阅读 · 2019年6月27日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员