The amount of power generated by a wave farm depends on the Wave Energy Converter (WEC) arrangement along with the usual wave conditions. Therefore, forming the appropriate arrangement of WECs in an array is an important factor in maximizing power absorption. Data collected from the test sites is used to design a neural model for predicting wave farm's power output generated. This paper focuses on developing a neural model for the prediction of wave energy based on the data set derived from the four real wave scenarios from the southern coast of Australia. The applied converter model is a fully submerged three-tether converter called CETO. A precise analysis of the WEC placement is investigated to reveal the amount of power generated by the wave farms on the test site.
翻译:电波农场产生的电能量取决于波能转换器(WEC)的安排以及通常的波变条件。因此,在阵列中形成WEC的适当安排是最大限度地吸收电能的一个重要因素。从试验场收集的数据用于设计一个神经模型,用于预测波变农场产生的电能输出量。本文的重点是根据从澳大利亚南部海岸四种实际波变情况中得出的数据集开发一个预测波能的神经模型。应用转换器模型是完全淹没的三对流转换器,称为CETO。对WEC位置进行精确分析,以揭示波变场在试验场上产生的电量。