Given the damages from earthquakes, seismic isolation of critical infrastructure is vital to mitigate losses due to seismic events. A promising approach for seismic isolation systems is metamaterials-based wave barriers. Metamaterials -- engineered composites -- manipulate the propagation and attenuation of seismic waves. Borrowing ideas from phononic and sonic crystals, the central goal of a metamaterials-based wave barrier is to create band gaps that cover the frequencies of seismic waves. The two quantities of interest (QoIs) that characterize band-gaps are the first-frequency cutoff and the band-gap's width. Researchers often use analytical (band-gap analysis), experimental (shake table tests), and statistical (global variance) approaches to tailor the QoIs. However, these approaches are expensive and compute-intensive. So, a pressing need exists for alternative easy-to-use methods to quantify the correlation between input (design) parameters and QoIs. To quantify such a correlation, in this paper, we will use Shapley values, a technique from the cooperative game theory. In addition, we will develop machine learning models that can predict the QoIs for a given set of input (material and geometrical) parameters.


翻译:鉴于地震造成的破坏,关键基础设施的地震隔离对于减轻地震事件造成的损失至关重要。地震隔离系统的一个很有希望的方法是以元材料为基础的波岩屏障。模型材料 -- -- 工程合成材料 -- -- 操纵地震波的传播和减弱。从声波和声波晶体中借用想法,以元材料为基础的波岩屏障的中心目标是制造覆盖地震波频率的波段差距。作为波段悬崖特征的两股兴趣(QoIs)是第一频率断裂和波段宽度。研究人员经常使用分析(波段分析)、实验(沙克表测试)和统计(全球差异)方法来调整地震波的传播和减速。然而,这些方法是昂贵的,而且非常费钱的。因此,迫切需要采用其他容易使用的方法来量化输入(设计)参数和QoIs之间的相互关系。为了量化这种相关性,我们将使用Shapley值,这是合作游戏理论中的一种技术。此外,我们将开发机器学习模型,用来预测投入的参数和测量参数。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员