Given the damages from earthquakes, seismic isolation of critical infrastructure is vital to mitigate losses due to seismic events. A promising approach for seismic isolation systems is metamaterials-based wave barriers. Metamaterials -- engineered composites -- manipulate the propagation and attenuation of seismic waves. Borrowing ideas from phononic and sonic crystals, the central goal of a metamaterials-based wave barrier is to create band gaps that cover the frequencies of seismic waves. The two quantities of interest (QoIs) that characterize band-gaps are the first-frequency cutoff and the band-gap's width. Researchers often use analytical (band-gap analysis), experimental (shake table tests), and statistical (global variance) approaches to tailor the QoIs. However, these approaches are expensive and compute-intensive. So, a pressing need exists for alternative easy-to-use methods to quantify the correlation between input (design) parameters and QoIs. To quantify such a correlation, in this paper, we will use Shapley values, a technique from the cooperative game theory. In addition, we will develop machine learning models that can predict the QoIs for a given set of input (material and geometrical) parameters.
翻译:鉴于地震造成的破坏,关键基础设施的地震隔离对于减轻地震事件造成的损失至关重要。地震隔离系统的一个很有希望的方法是以元材料为基础的波岩屏障。模型材料 -- -- 工程合成材料 -- -- 操纵地震波的传播和减弱。从声波和声波晶体中借用想法,以元材料为基础的波岩屏障的中心目标是制造覆盖地震波频率的波段差距。作为波段悬崖特征的两股兴趣(QoIs)是第一频率断裂和波段宽度。研究人员经常使用分析(波段分析)、实验(沙克表测试)和统计(全球差异)方法来调整地震波的传播和减速。然而,这些方法是昂贵的,而且非常费钱的。因此,迫切需要采用其他容易使用的方法来量化输入(设计)参数和QoIs之间的相互关系。为了量化这种相关性,我们将使用Shapley值,这是合作游戏理论中的一种技术。此外,我们将开发机器学习模型,用来预测投入的参数和测量参数。