In this paper, we present a novel fault injection framework for system call invocation errors, called Phoebe. Phoebe is unique as follows. First, Phoebe enables developers to have full observability of system call invocations. Second, Phoebe generates error models that are realistic in the sense that they mimic errors that naturally happen in production. Third, Phoebe is able to automatically conduct experiments to systematically assess the reliability of applications with respect to system call invocation errors in production. We evaluate the effectiveness and runtime overhead of Phoebe on two real-world applications in a production environment. The results show that Phoebe successfully generates realistic error models and is able to detect important reliability weaknesses with respect to system call invocation errors. To our knowledge, this novel concept of "realistic error injection", which consists of grounding fault injection on production errors, has never been studied before.


翻译:在本文中,我们提出了一个称为Phoebe. Phoebe 的系统呼叫援引错误的新型错误注入框架。 Phoebe 具有以下独特性。 首先, Phoebe 使开发者能够完全看得懂系统呼叫引用职业。 第二, Phoebe 生成了现实的错误模型, 其含义是它们模仿生产过程中自然发生的错误。 第三, Phoebe 能够自动进行实验, 系统评估系统呼叫援引生产错误应用应用的可靠性。 我们评估了Phoebe 在生产环境中两种现实世界应用中的有效性和运行时间。 结果显示, Phoebe 成功地生成了现实的错误模型, 并且能够发现系统呼叫引用错误方面的重要可靠性缺陷。 据我们所知, 由生产错误造成错误的错误注入为根据的新概念, 从未进行过研究。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2017年12月5日
Arxiv
0+阅读 · 2021年3月18日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关VIP内容
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
111+阅读 · 2020年11月12日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2017年12月5日
Top
微信扫码咨询专知VIP会员