Genome-wide association studies (GWAS) correlate genetic variants in genomes to phenotypes, i.e., observable characteristics such as diseases, that they may cause. Privacy-preserving distributed algorithms have been designed to compute these statistical analyses. However, they have limited applicability, since judging whether a federation of genome data owners can safely release the results of these analyzes still requires the use of a centralized algorithm that determines the conditions such data can be safely released. This centralization violates privacy regulations, such as the GDPR, when the federation is distributed and spans multiple institutional and legislative domains. In particular, collusion or compromise of federation members may violate the privacy of individuals who have entrusted other members with their data. In this work, we introduce GenDPR, a collusion-tolerant, distributed middleware and architecture for computing and checking for the safe release of GWAS. GenDPR leverages trusted execution environment (TEE) to avoid transferring genomes across privacy domains and to determine which statistics to release safely. We show that GenDPR achieves the same accuracy as a centralized solution while protecting against collusions of all-but-one federation members aiming at exposing other members' genomes. Additionally, GenDPR significantly reduces the amount of transferred data, since only intermediary results are exchanged between TEEs.


翻译:全基因组协会研究(GWAS)将基因组的遗传变异与可能引发的苯型(即疾病等可观测特征)联系起来。 隐私保护分布式算法的设计是为了计算这些统计分析,然而,这些算法的可适用性有限,因为要判断基因组数据所有者联合会能否安全地公布这些分析的结果,仍需要使用一种中央算法,以决定此类数据能够安全释放的条件。这种集中化违反了隐私条例,例如当联邦分布和跨越多个体制和立法领域时,基因组遗传学条例。特别是,联邦成员的串通或妥协可能侵犯委托其他成员使用其数据的个人的隐私。在这项工作中,我们采用基因组、协作容忍、分发的中型软件和结构来计算和检查基因组数据的安全释放。 GENDPR利用信任的执行环境,以避免基因组在隐私领域转移基因组,并确定安全释放的统计资料。我们显示,GENDPR在保护所有成员相互串联的情况下,实现与集中解决办法相同的准确性,同时防止所有成员相互串通。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
17+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月16日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
17+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员