Data centers increasingly host mutually distrustful users on shared infrastructure. A powerful tool to safeguard such users are digital signatures. Digital signatures have revolutionized Internet-scale applications, but current signatures are too slow for the growing genre of microsecond-scale systems in modern data centers. We propose DSig, the first digital signature system to achieve single-digit microsecond latency to sign, transmit, and verify signatures in data center systems. DSig is based on the observation that, in many data center applications, the signer of a message knows most of the time who will verify its signature. We introduce a new hybrid signature scheme that combines cheap single-use hash-based signatures verified in the foreground with traditional signatures pre-verified in the background. Compared to prior state-of-the-art signatures, DSig reduces signing time from 18.9 to 0.7 us and verification time from 35.6 to 5.1 us, while keeping signature transmission time below 2.5 us. Moreover, DSig achieves 2.5x higher signing throughput and 6.9x higher verification throughput than the state of the art. We use DSig to (a) bring auditability to two key-value stores (HERD and Redis) and a financial trading system (based on Liquibook) for 86% lower added latency than the state of the art, and (b) replace signatures in BFT broadcast and BFT replication, reducing their latency by 73% and 69%, respectively


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员