The material point method (MPM), a hybrid Lagrangian--Eulerian particle method, is increasingly used to simulate large-deformation and history-dependent behavior of geomaterials. While explicit time integration dominates current MPM implementations due to its algorithmic simplicity, such schemes are unsuitable for quasi-static and long-term processes typical in geomechanics. Implicit MPM formulations are free of these limitations but remain less adopted, largely due to the difficulty of computing the Jacobian matrix required for Newton-type solvers, especially when consistent tangent operators should be derived for complex constitutive models. In this paper, we introduce GeoWarp -- an implicit MPM framework for geomechanics built on NVIDIA Warp -- that exploits GPU parallelism and reverse-mode automatic differentiation to compute Jacobians without manual derivation. To enhance efficiency, we develop a sparse Jacobian construction algorithm that leverages the localized particle--grid interactions intrinsic to MPM. The framework is verified through forward and inverse examples in large-deformation elastoplasticity and coupled poromechanics. Results demonstrate that GeoWarp provides a robust, scalable, and extensible platform for differentiable implicit MPM simulation in computational geomechanics.
翻译:物质点法(MPM)作为一种混合拉格朗日-欧拉粒子方法,正日益广泛地用于模拟岩土材料的大变形和历史相关行为。虽然显式时间积分因其算法简单性在当前MPM实现中占主导地位,但此类方案不适用于地力学中典型的准静态和长期过程。隐式MPM公式不受这些限制,但采用程度仍然较低,这主要源于牛顿型求解器所需的雅可比矩阵计算困难,特别是在复杂本构模型中需要推导一致切线算子时。本文提出GeoWarp——一个基于NVIDIA Warp构建的隐式MPM地力学框架——该框架利用GPU并行性和反向模式自动微分技术实现无需手动推导的雅可比矩阵计算。为提升计算效率,我们开发了一种稀疏雅可比矩阵构建算法,该算法充分利用了MPM固有的局部化粒子-网格相互作用特性。通过大变形弹塑性与耦合多孔介质力学的正演及反演算例验证了该框架的有效性。结果表明,GeoWarp为计算地力学领域提供了一个鲁棒、可扩展且可拓展的可微分隐式MPM仿真平台。