We live in a digital world that, in 2010, crossed the mark of one zettabyte data. This huge amount of data processed on computers extremely fast with optimized techniques allows one to find insights in new and emerging types of data and content and to answer questions that were previously considered beyond reach. This is the idea of Big Data. Google now offers the Google Correlate analysis public tool that, from a search term or a series of temporal or regional data, provides a list of queries on Google whose frequencies follow patterns that best correlate with the data, according to the Pearson determination coefficient R2. Of course, correlation does not imply causation. We believe, however, that there is potential for these big data tools to find unexpected correlations that may serve as clues to interesting phenomena, from the pedagogical and even scientific point of view. As far as we know, this is the first proposal for the use of Big Data in Science Teaching, of constructionist character, taking as mediators the computer and the public and free tools such as Google Correlate. It also has an epistemological bias, not being merely a training in computational infrastructure or predictive analytics, but aiming at providing students a better understanding of physical concepts, such as phenomena, observation, measurement, physical laws, theory, and causality. With it, they would be able to become good Big Data specialists, the so needed 'data scientists' to solve the challenges of Big Data.


翻译:2010年,我们生活在一个数字世界中,这个数字世界跨过了一个zettbyte数据的标记。根据皮尔逊确定系数R2.,在计算机上处理的大量数据非常快速,使用优化技术,使得人们能够找到新的和正在出现的数据和内容类型的洞见,并回答以前被认为无法触及的问题。这是大数据的概念。谷歌现在提供了谷歌Correlate分析公共工具,从搜索术语或一系列时间或区域数据,提供谷歌的频率与数据最相联的频率模式的查询清单。根据皮尔逊确定系数R2.当然,相关性并不意味着因果关系。然而,我们认为,这些大数据工具有可能发现出乎意料的关联性,从教学甚至科学角度来说,可以作为有趣的现象的线索。据我们所知,这是第一个在科学教学中使用大数据、建筑学性质、将计算机和公共及免费工具(如谷歌Correlate)作为调解人的建议。它也有一种认知偏差,不仅仅是计算基础设施或预测性科学家的训练,也不是因果关系。我们认为,这些大数据工具有可能发现出出出出出出出出出出出出意外的关联的关联性,从教学、甚至学系中学生更需要的数据。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
108+阅读 · 2020年2月5日
Arxiv
34+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
5+阅读 · 2016年1月15日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员