We study a three-dimensional articulated rigid-body biped model that possesses zero cost of transport walking gaits. Energy losses are avoided due to the complete elimination of the foot-ground collisions by the concerted oscillatory motion of the model's parts. The model consists of two parts connected via a universal joint. It does not rely on any geometry altering mechanisms, massless parts or springs. Despite the model's simplicity, its collisionless gaits feature walking with finite speed, foot clearance and ground friction. The collisionless spectrum can be studied analytically in the small movement limit, revealing infinitely many periodic modes. The modes differ in the number of sagittal and coronal plane oscillations at different stages of the walking cycle. We focus on the mode with the minimal number of such oscillations, presenting its complete analytical solution. We then numerically evolve it toward a general non-small movement solution. A general collisionless mode can be tuned by adjusting a single model parameter. Some of the presented results display a surprising degree of generality and universality.
翻译:我们研究了一个三维的、分立的僵硬体双体模型,它拥有运输行走的零成本。由于模型部件的协同振动完全消除了脚下碰撞,因此避免了能源损失。模型由两个部分组成,它们通过一个通用联合连接连接。它不依赖任何几何改变机制、无质量部分或弹簧。尽管模型简单,它的无碰撞的长颈特征是以有限速度行走、足透镜和地面摩擦。不碰撞的频谱可以用小移动限制来分析研究,揭示出无限多的周期性模式。在行走周期的不同阶段,其方位和时空平面振荡的次数各不相同。我们侧重于这种模式的最小数量,提出完整的分析解决办法。然后,我们从数字上将其演变为一般的非小移动解决办法。一般的不碰撞模式可以通过调整一个单一的模型参数来调整。提出的一些结果显示了惊人的普遍性和普遍性。