Randomized controlled trials (RCTs) are increasingly prevalent in education research, and are often regarded as a gold standard of causal inference. Two main virtues of randomized experiments are that they (1) do not suffer from confounding, thereby allowing for an unbiased estimate of an intervention's causal impact, and (2) allow for design-based inference, meaning that the physical act of randomization largely justifies the statistical assumptions made. However, RCT sample sizes are often small, leading to low precision; in many cases RCT estimates may be too imprecise to guide policy or inform science. Observational studies, by contrast, have strengths and weaknesses complementary to those of RCTs. Observational studies typically offer much larger sample sizes, but may suffer confounding. In many contexts, experimental and observational data exist side by side, allowing the possibility of integrating "big observational data" with "small but high-quality experimental data" to get the best of both. Such approaches hold particular promise in the field of education, where RCT sample sizes are often small due to cost constraints, but automatic collection of observational data, such as in computerized educational technology applications, or in state longitudinal data systems (SLDS) with administrative data on hundreds of thousand of students, has made rich, high-dimensional observational data widely available. We outline an approach that allows one to employ machine learning algorithms to learn from the observational data, and use the resulting models to improve precision in randomized experiments. Importantly, there is no requirement that the machine learning models are "correct" in any sense, and the final experimental results are guaranteed to be exactly unbiased. Thus, there is no danger of confounding biases in the observational data leaking into the experiment.


翻译:随机测试在教育研究中越来越普遍,而且往往被视为因果关系推断的黄金标准。随机测试的两个主要优点是:(1) 随机测试没有受到混乱的影响,因此可以对干预的因果关系作出公正的估计,(2) 允许基于设计的推断,这意味着随机测试的实际行为在很大程度上证明作出统计假设是有道理的。然而,随机测试的体积往往很小,导致精确度低;在许多情况下,RCT估计可能太不精确,无法指导政策或告知科学。对比之下,观测研究具有与RCT相比的优点和弱点。观察性研究通常具有更大的样本大小,但可能会受到混乱。在许多情况下,实验和观察数据数据存在并存,从而有可能将“大观测数据”与“小但质量高的”实验数据结合起来,但这种方法在教育领域特别有希望,因为成本限制,RCT的样本大小可能太小,无法指导政策或为科学提供信息。 观测结果的自动采集观测模型,如在计算机化的精确度测算中,结果的准确性测测测测测,或长期数据中,“我们从一个高级数据学中可以将数据流学到一个高级数据系统。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月18日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月18日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员