With an increasing number of electric vehicles, the accurate forecasting of charging station occupation is crucial to enable reliable vehicle charging. This paper introduces a novel Deep Fusion of Dynamic and Static Information model (DFDS) to effectively forecast the charging station occupation. We exploit static information, such as the mean occupation concerning the time of day, to learn the specific charging station patterns. We supplement such static data with dynamic information reflecting the preceding charging station occupation and temporal information such as daytime and weekday. Our model efficiently fuses dynamic and static information to facilitate accurate forecasting. We evaluate the proposed model on a real-world dataset containing 593 charging stations in Germany, covering August 2020 to December 2020. Our experiments demonstrate that DFDS outperforms the baselines by 3.45 percent points in F1-score on average.
翻译:随着电动车辆数量的增加,准确预测充电站占用率对于可靠车辆充电至关重要。本文介绍了一个新的动态和静态信息模型(DFDS)的深度整合,以有效预测充电站占用率。我们利用静态信息,如每日平均占用率等静态信息,了解具体的充电站模式。我们用反映上一个充电站占用率的动态信息以及日间和周日等时间信息来补充这种静态数据。我们的模型有效地结合动态和静态信息,以便于准确预测。我们评估了包含德国593个充电站的真实世界数据集的拟议模型,涵盖2020年8月至2020年12月。我们的实验表明,DFDS平均比F1-核心的基线高出3.45%。